EVALUATION OF ANTIDIABETIC ACTIVITY OF SAMANEA SAMAN (JACQ.) MERR
Babin D Reejo*1, P. Natarajan2, A. Thangathirupathi3

1Department of Pharmacology, Malik Deenar College of Pharmacy, Seethangoli, Kasaragod, Kerala, India.
2Department of Pharmacology, Sankaralingam Bhuvaneswari College of Pharmacy, Anaikuttam, Sivakasi, TN, India.
3Department of Pharmacology, Devaki Amma Memorial College of Pharmacy, Chelembra, Malappuram, Kerala, India.

ABSTRACT
In the present study methanolic extract of *Samanea saman*(Jacq.) Merr. was evaluated for its potential anti diabetic activity by in-vitro α- amylase inhibition and in-vivo epinephrine induced diabetic rats. Several drugs such as biguanides and sulfonylureas are presently available to reduce hyperglycemia in diabetes mellitus. These drugs have side effects and thus searching for a new class of phytochemical. Phytochemical screening of methanolic extract of *Samanea saman*(Jacq.) Merr. Revealed the presence of flavonoids, carbohydrates, glycosides, saponins and gums and mucilage. Methanolic extract of *Samanea saman*(Jacq.) Merr. at the doses of 250 mg/kg p.o and 500 mg/kg p.o significantly reduces the increased blood glucose level as compared to the disease control group (p<0.001) at 1 and 2, (p<0.05) 1/2 hours respectively inepinephrine induced diabetic rats. Also shows significant α- amylase inhibition in concentrations such as 50µg/ml <100µg/ml <150µg/ml <200µg/ml <250µg/ml. Evaluation of active compounds from the methanolic extract of *Samanea saman*(Jacq.) Merr. for their antidiabetic activities may paw the way for the identification of a new class of phytochemical for the treatment of diabetes mellitus.

KEYWORDS
Samanea saman(SS), α- amylase, Epinephrine, Methanolic extract and Phytochemical.

INTRODUCTION
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia and abnormalities in carbohydrate, fat and protein metabolism. It results from defects in insulin secretion and insulin sensitivity1. Diabetes mellitus is found to be one of the five leading cause of death in the world. The number of diabetic people is expected to rise to 366 million in 2030. Management of diabetes without any side effects is still a challenge to the medical community2. About 130
pure chemical substances extracted from some 100 species of higher plants are used in medicines throughout the world. According to United Nations Development Project (UNDP) report, the annual value of medicinal plants derived from developing countries is about $32 billion (Rs. 100,000 crore). Theoretically, there is the possibility of discovering 328 modern drugs lying hidden in nearly 325,000 species found in tropical rain forests. There are 47 major modern plant based drugs on the world market and the predicted 328 more potential drugs have an estimated value of $147 billion. Globally various extracts of plant parts are screened for its antidiabetic activity. World Health Organization (WHO) has recommended the traditional plant treatment for diabetes warrant further evaluation. Samaneasaman (Jacq.) Merr. belonging to the family Mimosaceae is a large tropical tree growing as much as 60 m tall, with rough wrinkled bark and developing a symmetrical broad umbrella shaped crown about 80 m wide. Samaneasaman (Jacq) Merr is a herbal drug, which has long been used by tribes and native medical practitioners in the treatment for many kind of diseases such as rheumatism, constipation, leprosy, diabetes, microbial infection, inflammation and spasms. The root decoction is used in hot baths for stomach cancer in Venezuela. Rain Tree is a traditional remedy for colds, diarrhea, headache, intestinal ailments and stomachache. The leaf infusion is used as a laxative. In West Indies, seeds are chewed for sore throat. The alcoholic extract of the leaves inhibits Mycobacterium tuberculosis. In Colombia, the fruit decoction is used as a sedative. Samaneasaman (Jacq) Merr. was traditionally used for the treatment of diabetes mellitus in India, however there is no scientific proof regarding its use as anti diabetic agent.

MATERIALS AND METHOD

PLANT MATERIAL

The leaves were collected from Moosaari, a place near Karungal, Kanyakumari District, Tamil Nadu, India in September 2012 and was identified and authenticated by Taxanomist Dr. V. Ganesan. Professor and Head, Dept. of Botany, AyyanadarJanakiammal College of Arts and Science, VirudhunagarDist, Sivakasi, Tamil Nadu. The plant specimen was certified as Samaneasaman (Jacq.) Merr. of family Mimosaceae. The leaves are shade dried and size reduced for further extraction.

Preparation of Extract

About 85 gm leaf of Samaneasaman (Jacq.) Merr. air dried powdered material was taken in 1000ml Soxhlet apparatus and continues extraction was conducted with hexane, chloroform, ethyl acetate and methanol.

Phytochemical Screening

All the four extracts were screened for preliminary phytochemical analysis.

Animals

Animal experimentation part was performed strictly adhering to Indian regulations and approved by Institutional Animal Ethical Committee (Reference No: SBCP/2012-2013/ CPCSEA/IAEC-III/01). Adult wister albino rats weighing 150-200 gms were used for the study. Animals were maintained under 12 hr light-dark cycles with ad libitum access to standard rat pellet diet and water.

EXPERIMENTAL DESIGN

Epinephrine Induced Diabetes

Adult Wister albino rats are fasted overnight and are randomly divided into five groups of 5 each after determining their fasting blood glucose (FBG). All animals in control group will receive epinephrine hydrochloride (0.8mg/kg) intraperitoneally and blood glucose will be estimated at 0, 1/2, 1, 2 h later by using glucometer. The standard and extract groups first will receive their respective drug and plant extracts (250 and 500 mg/kg) p.o. Two hours later, epinephrine hydrochloride (0.8mg/kg) will be given intraperitoneally. The blood glucose will be determined in the same manner as that of control.

GROUP-1
Normal control (saline) GROUP-2
Diabetic control, Epinephrine (0.8 mg/kg) i.p GROUP-3

Available online: www.uptodateresearchpublication.com July - August 353
Statistical Analysis
Values are expressed as mean ± SEM. Data collected from the studies are subjected for statistical analysis using two way ANOVA followed by Tukey’s multiple comparison tests. The difference between each groups are considered statistically significant at P<0.05. All statistical analysis are performed using Graph Pad prism statistical software (version 5.03).

RESULTS AND DISCUSSION
The leaves of *Samaneasaman*(Jacq.) Merr. was subjected to different solvent extractions and the extracts were dried and finally percentage yield also calculated. Methanolic extract showed the presence of maximum phytoconstituents. Thus methanolic extract was used for further study. Phytochemical screening of methanolic extract of *Samaneasaman*(Jacq.) Merr. revealed the presence of flavanoids, carbohydrates, glycosides, saponins and gums and mucilage. The activity of methanolic extract of *Samaneasaman* (Jacq.) Merr.at the doses of 250mg/kg p.o and 500mg/kg p.o, on epinephrine induced diabetes were shown in the Table No.1, 2 and Figure No.1, 2.

Table No.1: Effect of methanolic leaf extract of *Samaneasaman* (Jacq.) Merr.in epinephrine induced diabetic rats

<table>
<thead>
<tr>
<th>G. No</th>
<th>Drug and Treatment</th>
<th>Normal Blood Glucose mg/dl</th>
<th>Blood Glucose Level in (hour) mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Normal control (saline)</td>
<td>121.67±11.98</td>
<td>125.33±10.73</td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control</td>
<td>102.67±3.71</td>
<td>126.34±9.42</td>
</tr>
<tr>
<td>III</td>
<td>Diabetic treated + Glibenclamide (600µg/kg) p.o</td>
<td>126.48±8.02</td>
<td>139.23±13.97</td>
</tr>
<tr>
<td>IV</td>
<td>Diabetic treated + SS 250mg/kg p.o</td>
<td>104.05±5.69</td>
<td>123.67±10.99</td>
</tr>
<tr>
<td>V</td>
<td>Diabetic treated + SS 500mg/kg p.o</td>
<td>121.67±5.90</td>
<td>137.67±16.19</td>
</tr>
</tbody>
</table>

Values were expressed as mean blood sugar level (mg/dl) ± SEM (n=5). Statistical analysis was performed using two way ANOVA followed by Tukey’s multiple comparison tests using Graph Pad prism 5.03.*p<0.001, **p<0.01 diabetic control Vs normal control and #p<0.001, ##p<0.05 diabetic control Vs treatment groups.

Available online: www.uptodateresearchpublication.com July - August 354
Table No.2: α- Amylase Inhibition

<table>
<thead>
<tr>
<th>S.No</th>
<th>Sample</th>
<th>Concentration (µg/ml)</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methanolic extract of SS</td>
<td>50</td>
<td>21.670</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>30.742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>41.713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>54.742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>97.865</td>
</tr>
</tbody>
</table>

Figure No.1: Effect of SS and Glibenclamide treatment in Blood glucose levels in Epinephrine induced Hyperglycemia

Figure No.2: α- Amylase Inhibition
CONCLUSION
Finding of the present study provide evidence that, methanolic extract of Samaneasaman (Jacq.) Merr.at the doses of 250 and 500 mg/kg p.o respectively have potential anti diabetic effect in epinephrine induced diabetic rats. It also shows high invitro alpha amylase inhibition in various concentrations. Therefore, the plant Samaneasaman (Jacq.) Merr. contains alkaloids, flavanoids and glycosides was considered as powerful anti diabetic agent could offer useful support to the anti diabetic therapy. Isolation and evaluation of active compounds from the methanolic extract of Samaneasaman (Jacq.) Merr. for their antidiabetic activities may paw the way for the identification of a new class of phytochemical for the treatment of diabetes mellitus.

ACKNOWLEDGEMENT
Let me take this opportunity to express my heartfelt gratitude to my reverend guide Mr. P. Natarajan, M.Pharm., Associate Professor, Department of Pharmacology and Toxicology, S.B College of Pharmacy, Anaikuttam. His discipline, principles, simplicity, caring attitude and provision of fearless work environment will cherish in all walks of my life. I am very much grateful to him for his valuable guidance, everlasting encouragement and support during all stages of my work. Also I like to thank my loving parents Mr. A. Dhas, Mrs. M. Thresial Dhas, Brother Mr. Bibin D Jerald, my friends Mr. Sundararaman Sheshadri, Mr. I. Anand, Mr. R. Sanjay and Mr. A. Muneeswarn, who are the source of all wisdom and knowledge, for their presence throughout my work.

BIBLIOGRAPHY